Respuesta :
[tex]\cfrac{15p^{-4}q^{-6}}{-20p^{-12}q^{-3}} =\cfrac{3p^{-4+12}}{-4q^{-3+6}} =- \cfrac{3p^{8}}{4q^{3}}[/tex]
Answer:
[tex]\dfrac{15p^{-4}q^{-6}}{-20p^{-12}q^{-3}}\Rightarrow \dfrac{3p^{8}}{-4q^{3}}[/tex]
Step-by-step explanation:
We are given rational expression.
[tex]\text{Expression: }\dfrac{15p^{-4}q^{-6}}{-20p^{-12}q^{-3}}[/tex]
We need to simplify and write as quotient.
Using exponent law simplify the expression
[tex]a^m\div a^n=a^{m-n}[/tex]
[tex]a^m\times a^n=a^{m+n}[/tex]
[tex]\Rightarrow \dfrac{3p^{-4+12}q^{-6+3}}{-4}[/tex]
[tex]\Rightarrow \dfrac{3p^{8}q^{-3}}{-4}[/tex]
[tex]\Rightarrow \dfrac{3p^{8}}{-4q^{3}}[/tex]
Now we write quotient of simplest form.
Thus, simplified form is [tex]\Rightarrow \dfrac{3p^{8}}{-4q^{3}}[/tex]