[tex]\bf \qquad \qquad \textit{Future Value of an ordinary annuity}\\
\left. \qquad \qquad \right. (\textit{payments at the end of the period})
\\\\
A=pymnt\left[ \cfrac{\left( 1+\frac{r}{n} \right)^{nt}-1}{\frac{r}{n}} \right][/tex]
[tex]\bf \begin{cases}
A=
\begin{array}{llll}
\textit{accumulated amount}\\
\end{array}\\
pymnt=\textit{periodic payments}\to &110\\
r=rate\to 5.75\%\to \frac{5.75}{100}\to &0.0575\\
n=
\begin{array}{llll}
\textit{times it compounds per year}\\
\textit{payments are monthly, thus}
\end{array}\to &12\\
t=years\to &2
\end{cases}
\\\\\\
A=110\left[ \cfrac{\left( 1+\frac{0.0575}{12} \right)^{12\cdot 2}-1}{\frac{0.0575}{12}} \right][/tex]