Which number is the largest? 7.2 ⋅ 10−6, 3.09 ⋅ 103, 2.04 ⋅ 104, 5 ⋅ 103

7.2 ⋅ 10−6
3.09 ⋅ 103
2.04 ⋅ 104
5 ⋅ 103

Respuesta :

the equation whit the largest outcome is 5*103=515

Answer:

Option 3 - [tex]2.04\times 10^4[/tex]

Step-by-step explanation:

Given : Numbers [tex]7.2\times 10^{-6}[/tex] , [tex]3.09\times 10^3[/tex][tex]2.04\times 10^4[/tex] and [tex]5\times 10^3[/tex]

To find : Which number is largest ?

Solution :

We solve all number in standard form,

1) [tex]7.2\times 10^{-6}=\frac{72}{10}\times \frac{1}{1000000}[/tex]

[tex]7.2\times 10^{-6}=0.0000072[/tex]

2) [tex]3.09\times 10^3=\frac{309}{100}\times 1000[/tex]

[tex]3.09\times 10^3=3090[/tex]

3) [tex]2.04\times 10^4=\frac{204}{100}\times 10000[/tex]

[tex]2.04\times 10^4=20400[/tex]

4) [tex]5\times 10^3=5\times 1000[/tex]

[tex]5\times 10^3=5000[/tex]

The decimal number is the least number among all.

The five digit number is the greatest number among all.

So, 20400 is the greatest number.

Which means [tex]2.04\times 10^4[/tex] is the largest number.

Therefore, Option 3 is correct.