Respuesta :
Assuming the function is
[tex]y=-2+5\sin\left(\dfrac\pi{12}(x-2)\right)[/tex]
recall that [tex]-1\le\sin x\le1[/tex], which means
[tex]-1\le\sin\left(\dfrac\pi{12}(x-2)\right)\le1[/tex]
[tex]\implies-5\le5\sin\left(\dfrac\pi{12}(x-2)\right)\le5[/tex]
[tex]\implies-7\le-2+5\sin\left(\dfrac\pi{12}(x-2)\right)\le3[/tex]
and so the minimum value is -7.
[tex]y=-2+5\sin\left(\dfrac\pi{12}(x-2)\right)[/tex]
recall that [tex]-1\le\sin x\le1[/tex], which means
[tex]-1\le\sin\left(\dfrac\pi{12}(x-2)\right)\le1[/tex]
[tex]\implies-5\le5\sin\left(\dfrac\pi{12}(x-2)\right)\le5[/tex]
[tex]\implies-7\le-2+5\sin\left(\dfrac\pi{12}(x-2)\right)\le3[/tex]
and so the minimum value is -7.
Answer:
-7
Step-by-step explanation:
We are given that a function
[tex]y=-2+5 sin(\frac{\pi}{12}(x-2))[/tex]
We have to find the minimum value of y.
We know that range of sin x is [-1,1].
[tex]-1\leq sin(\frac{\pi}{12}(x-2))\leq 1[/tex]
[tex]-5\leq 5sin(\frac{\pi}{12}(x-2))\leq 5[/tex]
[tex]-5-2\leq -2+5sin(\frac{\pi}{12}(x-2))\leq 5-2[/tex]
[tex]-7\leq -2+5sin(\frac{\pi}{12}(x-2))\leq 3[/tex]
[tex]-7\leq y\leq 3[/tex]
Maximum value of y=3
Minimum value of y=-7
Hence, the minimum value of given function =-7