Respuesta :
firstly we have to find d:
[tex]d = \frac{a_{n}-a_{m}}{n-m} [/tex] ⇒
[tex]d = \frac{-120-(-32)}{9-1} = \frac{-88}{8} = -11[/tex]
now, when we know d, we can find the 32nd term by using a following formula:
[tex]a_{n}=a_{1}+(n-1)*d[/tex]
[tex]a_{32} =-32+31*(-11) = -32-341 = -373[/tex]
the answer is [tex]a_{32} = -373[/tex]
[tex]d = \frac{a_{n}-a_{m}}{n-m} [/tex] ⇒
[tex]d = \frac{-120-(-32)}{9-1} = \frac{-88}{8} = -11[/tex]
now, when we know d, we can find the 32nd term by using a following formula:
[tex]a_{n}=a_{1}+(n-1)*d[/tex]
[tex]a_{32} =-32+31*(-11) = -32-341 = -373[/tex]
the answer is [tex]a_{32} = -373[/tex]
Answer:
-373
Step-by-step explanation:
A
n
=
A
1
+
d
(
n
−
1
)
A
1
=
−
32
A
9
=
−
120
⇒
A
9
=
−
32
+
d
(
9
−
1
)
⇒
−
120
=
−
32
+
d
(
8
)
⇒
−
88
=
8
d
⇒
d
=
−
11
A
32
=
−
32
+
(
−
11
)
(
32
−
1
)
⇒
A
32
=
−
32
+
(
−
11
)
(
31
)
⇒
A
32
=
−
32
+
−
341
⇒
A
32
=
−
373