Respuesta :
[tex]\displaystyle\iiint_R\mathrm dV=\int_{y=-7}^{y=7}\int_{x=-\sqrt{49-y^2}}^{x=0}\int_{z=x}^{z=0}\mathrm dz\,\mathrm dx\,\mathrm dy[/tex]
Converting to cylindrical coordinates, the integral is equivalent to
[tex]\displaystyle\iiint_R\mathrm dV=\int_{\theta=\pi/2}^{\theta=3\pi/2}\int_{r=0}^{r=7}\int_{z=r\cos\theta}^{z=0}r\,\mathrm dz\,\mathrm dr\,\mathrm d\theta[/tex]
[tex]=\displaystyle\int_{\theta=\pi/2}^{\theta=3\pi/2}\int_{r=0}^{r=7}-r^2\cos\theta\,\mathrm dr\,\mathrm d\theta[/tex]
[tex]=-\displaystyle\left(\int_{\theta=\pi/2}^{3\pi/2}\cos\theta\,\mathrm d\theta\right)\left(\int_{r=0}^{r=7}r^2\,\mathrm dr\right)[/tex]
[tex]=\dfrac{2\times7^3}3=\dfrac{686}3[/tex]
Converting to cylindrical coordinates, the integral is equivalent to
[tex]\displaystyle\iiint_R\mathrm dV=\int_{\theta=\pi/2}^{\theta=3\pi/2}\int_{r=0}^{r=7}\int_{z=r\cos\theta}^{z=0}r\,\mathrm dz\,\mathrm dr\,\mathrm d\theta[/tex]
[tex]=\displaystyle\int_{\theta=\pi/2}^{\theta=3\pi/2}\int_{r=0}^{r=7}-r^2\cos\theta\,\mathrm dr\,\mathrm d\theta[/tex]
[tex]=-\displaystyle\left(\int_{\theta=\pi/2}^{3\pi/2}\cos\theta\,\mathrm d\theta\right)\left(\int_{r=0}^{r=7}r^2\,\mathrm dr\right)[/tex]
[tex]=\dfrac{2\times7^3}3=\dfrac{686}3[/tex]
We have that
Volume of the wedge-shaped region
[tex]W=228.65[/tex]
Attached below is a picture of the wedge-shaped region contained in the cylinder
Bearing in mind this shape, we have that the coordinates identifying the cylinder are as follows
Co-ordinates
[tex]0 \leq r \leq 7,\frac{\pi}{2} \leq 0 \leq \frac{\pi}{2},0 \leq z \leq x[/tex]
Where
[tex]0 \leq z \leq x =rcos \phi[/tex]
Generally the equation for the volume of the wedge-shaped region W is mathematically given as
[tex]\int \int \int_W 1dv=\int^{7}_{0} \int^{\frac{\pi}{2}}_{-\frac{\pi}{2}} \int^{rcos \phi}_{0}[/tex]
[tex]\int \int \int_W 1dv=\int^{7}_{0} r (\int^{\frac{\pi}{2}}_{-\frac{\pi}{2}}rcos\phi dv))dr[/tex]
[tex]\int \int \int_W 1dv=(\frac{(7)^3}{3}+\frac{(0)^3}{3})(sin {\pi/2}+sin{-\pi/2})[/tex]
[tex]\int \int \int_W 1dv=228.67[/tex]
Therefore
Volume of the wedge-shaped region
[tex]W=228.65[/tex]
For more information on this please visit
https://brainly.com/question/16177070
