Respuesta :
a^2+b^2=c^2
(2sqrt3)^2+b^2=16
12+b^2=16
solve for b
b=2
Now triangle area is A=1/2 bh
so
A=(1/2)(2)(2sqrt3)
A=2sqrt3
(2sqrt3)^2+b^2=16
12+b^2=16
solve for b
b=2
Now triangle area is A=1/2 bh
so
A=(1/2)(2)(2sqrt3)
A=2sqrt3
Answer:
Area is 2√3 ft².
Step-by-step explanation:
Given,
A right triangle having sides,
a = 2√3 ft,
c = 4 ft,
Where, c is the hypotenuse of the triangle,
If b is the other leg of the triangle,
By the pythagorean theorem,
[tex]c^2=a^2+b^2[/tex]
[tex]4^2=(2\sqrt{3})^2+b^2[/tex]
[tex]16=12+b^2[/tex]
[tex]4=b^2[/tex]
[tex]\implies b = 2[/tex]
Hence, the area of the given triangle is,
[tex]A=\frac{1}{2}\times a\times b[/tex]
[tex]=\frac{1}{2}\times 2\sqrt{3}\times 2[/tex]
[tex]=\frac{4\sqrt{3}}{2}[/tex]
[tex]=2\sqrt{3}\text{ square ft}[/tex]