Respuesta :

a^2+b^2=c^2
(2sqrt3)^2+b^2=16
12+b^2=16
solve for b
b=2
Now triangle area is A=1/2 bh
so
A=(1/2)(2)(2sqrt3)
A=2sqrt3

Answer:

Area is 2√3 ft².

Step-by-step explanation:

Given,

A right triangle having sides,

a = 2√3 ft,

c = 4 ft,

Where, c is the hypotenuse of the triangle,

If b is the other leg of the triangle,

By the pythagorean theorem,

[tex]c^2=a^2+b^2[/tex]

[tex]4^2=(2\sqrt{3})^2+b^2[/tex]

[tex]16=12+b^2[/tex]

[tex]4=b^2[/tex]

[tex]\implies b = 2[/tex]

Hence, the area of the given triangle is,

[tex]A=\frac{1}{2}\times a\times b[/tex]

[tex]=\frac{1}{2}\times 2\sqrt{3}\times 2[/tex]

[tex]=\frac{4\sqrt{3}}{2}[/tex]

[tex]=2\sqrt{3}\text{ square ft}[/tex]