The graph shows f(x) = 1/2 and its translation, g(x).
Which describes the translation of f(x) to g(x)?

Answer:
The translation function g(x) is given as:
[tex]g(x)=\dfrac{1}{2^x}+4[/tex]
step-by-step explanation:
The parent function is f(x) and its representation is given as:
[tex]f(x)=\dfrac{1}{2^x}[/tex]
Now the graph g*x) is obtained by translation of the graph f(x) by some units.
Now as the graph of g(x) is a shift of the graph f(x) or the graph g(x) is translated by 4 units upwards.
hence the function g(x) is represented by:
g(x)=f(x)+4.
Hence the translation function g(x) is given as:
[tex]g(x)=\dfrac{1}{2^x}+4[/tex]