Respuesta :

[tex]\displaystyle n^7:n^3 =\frac{n^7}{n^3} =n^{7-3}=n^4[/tex]

Answer: [tex]n^4[/tex]


Step-by-step explanation:

The given division problem is [tex]n^7\div n^3[/tex]

The law of exponents says that [tex]a^{m+n}=a^ma^n[/tex]

Therefore, [tex]n^7=n^{3+4}=n^3n^4[/tex]

Now, the division problem becomes

[tex]n^7\div n^3\\\\=\frac{n^7}{n^3}\\\\=\frac{n^3n^4}{n^3}\\\\\text{Cancel }n^3\text{ as common from numerator and denominator, we get}\\\\n^7\div n^3=n^4[/tex]

hence, the quotient of the given problem = [tex]n^4[/tex]