Approximate the area under the function between a and b using a left-hand sum with the given number of intervals.
f(x) = x^2 + 2
a = 1
b = 6
5 intervals
Calculate the area of the first rectangle.

Approximate the area under the function between a and b using a lefthand sum with the given number of intervals fx x2 2 a 1 b 6 5 intervals Calculate the area o class=

Respuesta :

Answer:

f(1) = 1² + 2 = 1 + 2 = 3

f(2) = 2² + 2 = 4 + 2= 6

f(3) = 3² + 2 = 9 + 2 = 11

f(4) = 4² + 2 = 16 + 2 = 18

f(5) = 5² + 2 = 25 + 2 = 27

Area = 3 + 6 + 11 + 18 + 27 = 65

Answer:

65 units²

Step-by-step explanation:

To approximate the area under the function f(x) = x ²+ 2 between a = 1 and b = 6 using a left-hand sum with 5 intervals, we first need to divide the interval from 'a' to 'b' into equal parts. The left-hand sum is calculated as follows:

[tex]\boxed{ \left \begin{array}{ccc} \text{\underline{Left-Hand Rectangle Approximation Method:}} \\\\ A \approx \sum_{i=1}^{n} f(x_{i-1}) \Delta x \\\\ \text{Where:} \\ \bullet \ A \ \text{is the approximate area under the curve} \\ \bullet \ n \ \text{is the number of rectangles} \\ \bullet \ f(x_{i-1}) \ \text{is the function value at the left end of the ith subinterval} \\ \bullet \ \Delta x \ \text{is the width of each subinterval} \end{array} \right}[/tex]

[tex]\hrulefill[/tex]

Determine the width of each interval:

[tex]\Delta x = \dfrac{b-a}{n}=\dfrac{6-1}{5}=\boxed{1}[/tex]

Now we can approximate the area:

[tex]L_n=\Delta x (f(x_0)+f(x_1)+\dots+f(x_{n-1}))[/tex]

[tex]\Longrightarrow L_5=\Delta x (f(1)+f(2)+f(3)+f(4)+f(5))[/tex]

[tex]\Longrightarrow L_5=(1) ([(1)^2 + 2]+[(2)^2 + 2]+[(3)^2 + 2]+[(4)^2 + 2]+[(5)^2 + 2])[/tex]

[tex]\Longrightarrow L_5=(1) (3+6+11+18+27)\\\\\\\Longrightarrow L_5=(1) (65)\\\\\\\therefore L_5 = \boxed{65 \text{ units$^2$}}[/tex]

Thus, the approximated area is 65 units².