From the following Vapor pressure data for BUTANOL, an estimate of the molar heat of vaporization of C4H9OH is _______ kj/mol.

P,mm Hg T,Kelvins
40.0 326
100. 343

Respuesta :

Answer:   - 38.1 kJ/mol

Explanation:

ln(P1/P2) = (-ΔHvap/R) * (1/T1 - 1/T2)

Where:

P1 and P2 are the vapor pressures at temperatures T1 and T2, respectively,

ΔHvap is the molar heat of vaporization,

R is the ideal gas constant (8.314 J/(mol·K)), and

ln represents the natural logarithm.

P1 = 40.0 mm Hg

T1 = 326 K

P2 = 100.0 mm Hg

T2 = 343 K

P1 = 40.0 mm Hg = 40.0/760 atm ≈ 0.0526 atm

T1 = 326 K

P2 = 100.0 mm Hg = 100.0/760 atm ≈ 0.1316 atm

T2 = 343 K

ln(0.0526/0.1316) = (-ΔHvap/8.314) * (1/326 - 1/343)

n(0.4) = (-ΔHvap/8.314) * (0.00306748 - 0.00291545)

ln(0.4) = (-ΔHvap/8.314) * 0.00015203

ΔHvap = -(8.314 * ln(0.4))/0.00015203

ΔHvap ≈ -(8.314 * ln(0.4))/0.00015203 ≈ - 38,051.4 J/mol ≈ - 38.1 kJ/mol