Respuesta :
Answer:
To find -5{a} + 2{b}, we first need to compute each term separately:
-5{a} = -5(1, -3) = (-5, 15)
2{b} = 2(4, 6) = (8, 12)
Now, add these results:
-5{a} + 2{b} = (-5, 15) + (8, 12) = (-5 + 8, 15 + 12) = (3, 27)
So, (-5\{a} + 2{b} = (3, 27).
Answer:
[tex](3, 27)[/tex]
Step-by-step explanation:
To find the vector [tex]-5\mathsf{a} + 2\mathsf{b}[/tex], where [tex]\mathsf{a} = (1, -3)[/tex] and [tex]\mathsf{b} = (4, 6)[/tex], we can use the following formula:
[tex]-5\mathsf{a} + 2\mathsf{b} = (-5 \cdot \mathsf{a}_x + 2 \cdot \mathsf{b}_x, -5 \cdot \mathsf{a}_y + 2 \cdot \mathsf{b}_y)[/tex]
Here, [tex]\mathsf{a}_x[/tex] and [tex]\mathsf{a}_y[/tex] are the components of vector [tex]\mathsf{a}[/tex], and [tex]\mathsf{b}_x[/tex] and [tex]\mathsf{b}_y[/tex] are the components of vector [tex]\mathsf{b}[/tex].
Let's substitute in the values:
[tex]-5\mathsf{a} + 2\mathsf{b} = (-5 \cdot 1 + 2 \cdot 4, -5 \cdot (-3) + 2 \cdot 6)[/tex]
[tex]= (-5 + 8, 15 + 12)[/tex]
[tex]= (3, 27)[/tex]
So, [tex]-5\mathsf{a} + 2\mathsf{b} = (3, 27)[/tex] in component form.