Respuesta :

(2x+3y)⁴
1) let 2x = a   and 3y = b

(a+b)⁴ = a⁴ + a³b + a²b² + ab³ + b⁴
Now let's find the coefficient of each factor using Pascal Triangle
     
                     0     |               1
                     1     |            1    1
                     2     |          1   2   1
                     3     |         1  3   3   1
                     4     |       1  4   6    4  1

0,1,2,3,4,.. represent the exponents of binomials 
Since our binomial has a 4th exponents, the coefficients are respectively:

(1)a⁴ + (4)a³b + (6)a²b² + (4)ab³ + (1)b⁴
Now replace a and b by their real values in (1):

2⁴x⁴ +(4)8x³(3y) + (6)(2²x²)(3²y²) + (4)(2x)(3³y³) + (1)(3⁴)(y⁴)

16x⁴ + 96x³y + 216x²y² + 216xy³ + 81y⁴

Answer:

16x^4 - 96x^3y + 216x^2y^2 - 216xy^3 + 81y^4

Step-by-step explanation:

(2x - 3y)^4

Fifth line on a Pascal Triangle

1, 4, 6 4, 1

(1) 2x^4

2^4 = 16

2x^4 = 16x^4

16x^4

(4) 2x^3 (-3y)^1

2^3 = 8

-3^1 = -3

8 times -3 times 4 = -96

-96x^3y

(6) 2x^2 (-3y)^2

2^2 = 4

-3^2 = 9

4 times 9 times 6 = 216

216x^2y^2

(4) 2x^1 (-3y)^3

2^1 = 2

-3^3 = -27

2 times - 27 times 4 = -216

-216xy^3

(1) (-3y)^4

-3^4 = 81

81y^4

16x^4 - 96x^3y + 216x^2y^2 - 216xy^3 + 81y^4