Respuesta :
(2x+3y)⁴
1) let 2x = a and 3y = b
(a+b)⁴ = a⁴ + a³b + a²b² + ab³ + b⁴
Now let's find the coefficient of each factor using Pascal Triangle
0 | 1
1 | 1 1
2 | 1 2 1
3 | 1 3 3 1
4 | 1 4 6 4 1
0,1,2,3,4,.. represent the exponents of binomials
Since our binomial has a 4th exponents, the coefficients are respectively:
(1)a⁴ + (4)a³b + (6)a²b² + (4)ab³ + (1)b⁴
Now replace a and b by their real values in (1):
2⁴x⁴ +(4)8x³(3y) + (6)(2²x²)(3²y²) + (4)(2x)(3³y³) + (1)(3⁴)(y⁴)
16x⁴ + 96x³y + 216x²y² + 216xy³ + 81y⁴
1) let 2x = a and 3y = b
(a+b)⁴ = a⁴ + a³b + a²b² + ab³ + b⁴
Now let's find the coefficient of each factor using Pascal Triangle
0 | 1
1 | 1 1
2 | 1 2 1
3 | 1 3 3 1
4 | 1 4 6 4 1
0,1,2,3,4,.. represent the exponents of binomials
Since our binomial has a 4th exponents, the coefficients are respectively:
(1)a⁴ + (4)a³b + (6)a²b² + (4)ab³ + (1)b⁴
Now replace a and b by their real values in (1):
2⁴x⁴ +(4)8x³(3y) + (6)(2²x²)(3²y²) + (4)(2x)(3³y³) + (1)(3⁴)(y⁴)
16x⁴ + 96x³y + 216x²y² + 216xy³ + 81y⁴
Answer:
16x^4 - 96x^3y + 216x^2y^2 - 216xy^3 + 81y^4
Step-by-step explanation:
(2x - 3y)^4
Fifth line on a Pascal Triangle
1, 4, 6 4, 1
(1) 2x^4
2^4 = 16
2x^4 = 16x^4
16x^4
(4) 2x^3 (-3y)^1
2^3 = 8
-3^1 = -3
8 times -3 times 4 = -96
-96x^3y
(6) 2x^2 (-3y)^2
2^2 = 4
-3^2 = 9
4 times 9 times 6 = 216
216x^2y^2
(4) 2x^1 (-3y)^3
2^1 = 2
-3^3 = -27
2 times - 27 times 4 = -216
-216xy^3
(1) (-3y)^4
-3^4 = 81
81y^4
16x^4 - 96x^3y + 216x^2y^2 - 216xy^3 + 81y^4