Solve the system of linear equations below.

2x + 3y = 2
x + 6y = 4

x = 0, y = 2

3


x = 2, y = - 2

3


x = 4

3 , y = 2

9

x = 4, y = -2

Respuesta :

2x + 3y = 2
x + 6y = 4 ....multiply by -2
-------------------
2x + 3y = 2
-2x - 12y = -8 (result of multiplying by -2)
----------------add
-9y = -6
y = -6/-9
y = 2/3

x + 6y = 4
x + 6(2/3) = 4
x + 4 = 4
x = 4 - 4
x = 0

solution is (0, 2/3)


2x + 3y = 2 ---- 1st equation

x + 6y = 4 

x = 4 - 6y 

Substituting value of x in 1st equation;

2(4 - 6y) + 3y = 2

8 - 12y + 3y = 2

- 9y = -6

y = [tex] \frac{-6}{-9} = \frac{2}{3} [/tex]

x = 4 - 6y = [tex]4 - 6* \frac{2}{3} = 4 - 2*2 [/tex] = 0

Hence, the value of x is 0 and the value of y is [tex] \frac{2}{3} [/tex].