what relationships do the ratios of sin x and cos y share

Answer:
sin x and cos y = 4:5
Step-by-step explanation:
In given right angle triangle.
Relation between sin x and cos y
Using trigonometry formula:
[tex]\sin \theta =\dfrac{\text{Opposite}}{\text{Hypotenuse}}[/tex]
[tex]\cos \theta =\dfrac{\text{Adjacent}}{\text{Hypotenuse}}[/tex]
For sin x , Opposite = 16 and Hypotenuse = 20
[tex]\sin x^\circ=\dfrac{16}{20}[/tex]
For cos y , Base = 16 and Hypotenuse = 20
[tex]\cos y^\circ=\dfrac{16}{20}[/tex]
[tex]\sin x^\circ=\cos y^\circ=\dfrac{16}{20}[/tex]
Ratio of sin x and cos y = 4:5
Hence, The sin x and cos y are equal.