How many solutions does this linear system have?

y = 2/3 x+ 2

6x – 4y = –10

one solution: (–0.6, –1.6)
one solution: (–0.6, 1.6)
no solution
infinite number of solutions

Respuesta :

Equation 1: [tex]y = \frac{2}{3}x+2 [/tex]
Equation 2: [tex]6x-4y=-10[/tex]

Substitute Equation 1 into Equation 2

[tex]6x-4[ \frac{2}{3}x+2]=-10 [/tex]
[tex]6x- \frac{8}{3}x -8=-10[/tex]
[tex] \frac{10}{3}x-8=-10 [/tex]
[tex] \frac{10}{3}x=-10+8 [/tex]
[tex] \frac{10}{3}x=-2 [/tex]
[tex]10x=-6[/tex]
[tex]x=- \frac{6}{10} [/tex]
[tex]x=-0.6[/tex]

Substitute x = -0.6 into either Equation 1 or Equation 2 to work out 'y'

[tex]y= \frac{2}{3}(-0.6)+2 = 1.6 [/tex]

The linear system only have one solution (-0.6, 1.6)

Correct answer: B

Answer:

B. one solution: (–0.6, 1.6)

Step-by-step explanation: