contestada

Is the inequality always, sometimes, or never true? 13. 3(2x + 1) > 5x − (2 − x)​14. 2(x − 1) ≥ x + 7 15. 7x + 2 ≤ 2(2x − 4) + 3x​16. 5(x − 3) < 2(x − 9)

Respuesta :

13. 3(2x + 1) > 5x - (2 - x)
      6x + 3 > 5x - 2 + x
      6x + 3 > 6x - 2
      6x - 6x > -2 - 3
       0 > -5.....ALWAYS TRUE

14. 2(x - 1) > = x + 7
      2x - 2 > = x + 7
      2x - x > = 7 + 2
      x > = 9.....SOMETIMES TRUE

15. 7x + 2 < = 2(2x - 4)
     7x + 2 < = 4x - 8
     7x - 4x < = -8 - 2
     3x < = - 10
      x < = -10/3....SOMETIMES TRUE

16. 5(x - 3) < 2(x - 9)
      5x - 15 < 2x - 18
      5x - 2x < -18 + 15
      3x < -3
      x < -3/3
      x < -1.....SOMETIMES TRUE

13. 3(2x + 1) > 5x - (2 - x)

      6x + 3 > 5x - 2 + x

      6x + 3 > 6x - 2

      6x - 6x > -2 - 3

       0 > -5..... always true


14. 2(x - 1) > = x + 7

      2x - 2 > = x + 7

      2x - x > = 7 + 2

      x > = 9....sometimes true


15. 7x + 2 < = 2(2x - 4)

     7x + 2 < = 4x - 8

     7x - 4x < = -8 - 2

     3x < = - 10

      x < = -10/3....sometimes true


16. 5(x - 3) < 2(x - 9)

      5x - 15 < 2x - 18

      5x - 2x < -18 + 15

      3x < -3

      x < -3/3

      x < -1.....sometimes true