Respuesta :
Answer:
[tex]x=\frac{r+17n}{34-n}[/tex].
Step-by-step explanation:
We have been given an equation [tex]n(17+x)=34x-r[/tex]. We are asked to solve for x.
Using distributive property, we will get:
[tex]17n+xn=34x-r[/tex]
Now, we will subtract 34x from both sides of our equation.
[tex]17n+xn-34x=34x-34x-r[/tex]
[tex]17n+xn-34x=-r[/tex]
Let us subtract 17n from both sides of our equation.
[tex]17n-17n+xn-34x=-r-17n[/tex]
[tex]xn-34x=-r-17n[/tex]
Now we will factor out x from left side of our equation.
[tex]x(n-34)=-r-17n[/tex]
Upon dividing both sides of our equation by [tex](n-34)[/tex], we will get:
[tex]\frac{x(n-34)}{(n-34)}=\frac{-r-17n}{(n-34)}[/tex]
[tex]x=\frac{-r-17n}{(n-34)}[/tex]
Now we will factor out negative sign as shown:
[tex]x=\frac{-(r+17n)}{-(-n+34)}[/tex]
[tex]x=\frac{r+17n}{34-n}[/tex]
Therefore, the value of x is [tex]x=\frac{r+17n}{34-n}[/tex].
Answer:
[tex]\frac{17n+r}{34-n}=x[/tex]
Step-by-step explanation:
Given :[tex]n(17+x)=34x−r[/tex]
To Find : Find the value of x
Solution :
[tex]n(17+x)=34x−r[/tex]
[tex]17n+xn=34x−r[/tex]
[tex]17n+r=34x−xn[/tex]
[tex]17n+r=x(34−n)[/tex]
[tex]\frac{17n+r}{34-n}=x[/tex]
Hence the value of x is [tex]\frac{17n+r}{34-n}[/tex]