Respuesta :

It would be 13/3 
What is this question from anyway?
Seems familiar.


Answer:

4.33 unit ( approx )

Step-by-step explanation:

The radius of the circle inscribed in triangle is,

[tex]r=\frac{A}{S}[/tex]

Where,

A = Area of the triangle,

S = Semi perimeter of the triangle,

Given,

In triangle ABC,

AB = 15, AC = 41, BC = 52

[tex]S=\frac{AB+AC+BC}{2}=\frac{15+41+52}{2}=\frac{108}{2}=54[/tex]

By the Heron's formula,

Area of the triangle ABC,

[tex]A=\sqrt{S(S-15)(S-41)(S-52)}[/tex]

[tex]=\sqrt{54(54-15)(54-41)(54-52)}[/tex]

[tex]=\sqrt{54\times 39\times 13\times 2}[/tex]

[tex]=\sqrt{54756}[/tex]

[tex]=234\text{ square unit}[/tex]

Hence, the radius of the circle inscribed in triangle ABC,

[tex]r=\frac{234}{54}\approx 4.33\text{ unit}[/tex]