Respuesta :

    a+2           a +1
= -------  / ------------------
    a -5      (a - 3)(a - 5)

    a+2           (a - 3)(a - 5)
= -------  *  ------------------
    a -5              a +1

    (a+2)(a - 3)
= ----------------
        a +1

a NOT equal 5 and -1

Answer:

[tex]\frac{(a+2)}{(a-5)} /\frac{(a+1)}{(a^2-8a+15)}=\frac{a^2-a-6}{a+1}[/tex]

Restriction:

[tex]a\neq -1[/tex]

[tex]a\neq 5[/tex]

Step-by-step explanation:

we are given

[tex]\frac{(a+2)}{(a-5)} /\frac{(a+1)}{(a^2-8a+15)}[/tex]

Since, it is division

so, we can flip it to get in multiplication

[tex]\frac{(a+2)}{(a-5)} /\frac{(a+1)}{(a^2-8a+15)}=\frac{(a+2)\times (a^2-8a+15)}{(a-5)\times (a+1)}[/tex]

now, we can factor it

and then we can simplify it

[tex]a^2-8a+15=(a-5)(a-3)[/tex]

[tex]\frac{(a+2)}{(a-5)} /\frac{(a+1)}{(a^2-8a+15)}=\frac{(a+2)\times (a-5)\times (a-3)}{(a-5)\times (a+1)}[/tex]

now, we can cancel it

[tex]\frac{(a+2)}{(a-5)} /\frac{(a+1)}{(a^2-8a+15)}=\frac{(a+2)\times (a-3)}{(a+1)}[/tex]

[tex]\frac{(a+2)}{(a-5)} /\frac{(a+1)}{(a^2-8a+15)}=\frac{a^2-a-6}{a+1}[/tex]

Restriction:

we know that denominator can not be zero

so,

[tex]a+1\neq 0[/tex]

[tex]a\neq -1[/tex]

and factored term can not be 0 as well

[tex]a-5\neq 0[/tex]

[tex]a\neq 5[/tex]