Given:
m = 3 x 10³⁶ kg, the mass of the star
r = 7.6 x 10⁵ km = 7.6 x 10⁸ m
Calculate the volume of the star (as the volume of a sold sphere).
[tex]V= \frac{4 \pi }{3} (7.6 \times 10^{8} \, m)^{3} = 1.8388 \times 10^{27} \, m^{3}[/tex]
Calculate the density the star.
By definition, the density of the star is
[tex]\rho = \frac{m}{V} = \frac{3 \times 10^{36} \, kg}{1.8388 \times \, m^{3}}=1.6315 \times 10^{9} \, \frac{kg}{m^{3}} [/tex]
In g/cm³, the density is
[tex](1.6315 \times 10^{9} \, \frac{kg}{m^{3}})*(10^{3} \, \frac{g}{kg} )*( \frac{1}{10^{6}} \, \frac{m^{3}}{cm^{3}} }) = 1.6315 \times 10^{6} \, \frac{g}{cm^{3}} [/tex]
Answer: 1.6315 x 10⁶ g/cm³