Answer:
[tex] \log_2 \left(\dfrac{zx^2}{y^2}\right) + \log_9 (y^4x^{12}) [/tex]
Step-by-step explanation:
To simplify the given expression, we can use the properties of logarithms:
[tex] \log_2 z + 2\log_2 x + 4\log_9 y + 12\log_9 x - 2\log_2 y [/tex]
Let's use the properties:
Product Rule: [tex] \log_a mn = \log_a m + \log_a n [/tex]
Power Rule: [tex] n\log_a x = \log_a x^n [/tex]
Quotient Rule: [tex] \log_a \dfrac{m}{n} = \log_a m - \log_a n [/tex]
Applying these rules:
[tex] \log_2 z + \log_2 x^2 + \log_9 y^4 + \log_9 x^{12} - \log_2 y^2 [/tex]
Combine the logarithms using the rules:
[tex] \log_2 (zx^2) + \log_9 (y^4x^{12}) - \log_2 y^2 [/tex]
Now, use the quotient rule for logarithms:
[tex] \log_2 \left(\dfrac{zx^2}{y^2}\right) + \log_9 (y^4x^{12}) [/tex]
Combine the logarithms using the product rule:
[tex] \log_2 \left(\dfrac{zx^2}{y^2}\right) + \log_9 (y^4x^{12}) [/tex]
So, the simplified expression is:
[tex] \Large \boxed{\boxed{ \log_2 \left(\dfrac{zx^2}{y^2}\right) + \log_9 (y^4x^{12})}} [/tex]