Respuesta :

Answer:

12.5 cm²

Step-by-step explanation:

The formula to determine the area of a sector in a circle, given the area of the circle, is:

[tex]\textsf{Area of a sector} = \dfrac{\theta}{2\pi} \times A[/tex]

where:

  • θ is the central angle of the sector in radians.
  • A is the total area of the circle.

In this case:

[tex]\theta=\dfrac{\pi}{4}[/tex]

[tex]A=100\; \sf cm^2[/tex]

Substitute the given values into the formula:

[tex]\textsf{Area of a sector} = \dfrac{\frac{\pi}{4}}{2\pi} \times 100\\\\\\\textsf{Area of a sector} =\dfrac{\pi}{4 \cdot 2\pi} \times 100\\\\\\\textsf{Area of a sector} =\dfrac{1}{8} \times 100\\\\\\\textsf{Area of a sector} =\dfrac{100}{8}\\\\\\\textsf{Area of a sector}=12.5\; \sf cm^2[/tex]

Therefore, the area of the sector that subtends an angle of π/4 radians in the circle with an area of 100 cm² is:

[tex]\Large\boxed{\boxed{12.5 \; \sf cm^2}}[/tex]

msm555

Answer:

12.5 cm²

Step-by-step explanation:

To find the area of a sector of a circle, we can use the formula:

[tex] \boxed{\boxed{\textsf{Area of Sector} = \dfrac{\textsf{Sector Angle}}{2\pi} \times \textsf{Area of Circle}}} [/tex]

Given:

Area of the circle = [tex]100 \, \textsf{cm}^2[/tex]

Sector angle = [tex]\dfrac{\pi }{4} \, \textsf{rad}[/tex]

We'll use the formula to find the area of the sector.

First, let's find the sector angle in radians:

We have the sector angle as [tex] \dfrac{\pi}{4} [/tex] radians.

So, the area of the sector will be:

[tex] \textsf{Area of Sector} = \dfrac{\dfrac{\pi }{4}}{2\pi} \times 100 \, \textsf{cm}^2 [/tex]

Simplify:

[tex] \textsf{Area of Sector} = \dfrac{\cancel{\pi } }{8 \cancel{ \pi}} \times 100 \, \textsf{cm}^2 [/tex]

[tex] \textsf{Area of Sector} = 12.5 \, \textsf{cm}^2 [/tex]

Thus, the area of the sector is:

[tex] \Large\boxed{\boxed{12.5 \, \textsf{cm}^2}} [/tex]