Answer:
[tex](2, -9)[/tex]
Step-by-step explanation:
To find the reflection of a point across the y-axis and then across the x-axis, we can use the following formulas:
Reflection across the y-axis:
[tex] \Large\boxed{\boxed{ (x, y) \longrightarrow (-x, y)}}[/tex]
Reflection across the x-axis:
[tex] \Large\boxed{\boxed{ (x, y) \longrightarrow (x, -y)}}[/tex]
Let's apply these formulas to point [tex]R(-2, 9)[/tex]:
Reflection across the y-axis:
[tex](-2, 9) \longrightarrow (2, 9)[/tex]
Reflection across the x-axis:
[tex](2, 9) \longrightarrow (2, -9)[/tex]
So, the point that is a reflection of point [tex]R(-2, 9)[/tex] first across the y-axis and then across the x-axis is:
[tex] \Large\boxed{\boxed{(2, -9)}}[/tex]