If cos a = 0.973 and sin ẞ = 0.687 with both angles' terminal
rays in Quadrant-I, find the values of
(a)
cos(a+B) = 0.5485
(b)
cos(a-B)=
Your answers should be accurate to 4 decimal places.
PLS HELP ME FIND PART B!!!!

Respuesta :

Answer: the value of cos(a-B) is 0.7065.

Step-by-step explanation:

To find the value of cos(a-B), we can use the cosine difference formula, which states:

cos(a-B) = cos(a)cos(B) + sin(a)sin(B)

Given that cos(a) = 0.973, sin(a) = √(1 - cos^2(a)) = √(1 - 0.973^2), and sin(B) = 0.687, we can calculate sin(a) as follows:

sin(a) = √(1 - cos^2(a))

sin(a) = √(1 - 0.973^2)

sin(a) = √(1 - 0.946729)

sin(a) ≈ √0.053271

sin(a) ≈ 0.2307

Now, we can substitute these values into the cosine difference formula:

cos(a-B) = cos(a)cos(B) + sin(a)sin(B)

cos(a-B) = 0.973 * cos(B) + 0.2307 * 0.687

cos(a-B) = 0.973 * cos(B) + 0.158477

To find the value of cos(B), we can use the Pythagorean identity sin^2(B) + cos^2(B) = 1, since sin(B) = 0.687:

sin^2(B) + cos^2(B) = 1

0.687^2 + cos^2(B) = 1

0.472369 + cos^2(B) = 1

cos^2(B) = 1 - 0.472369

cos^2(B) = 0.527631

cos(B) ≈ √0.527631

cos(B) ≈ 0.7261

Now, substitute cos(B) back into the previous equation:

cos(a-B) = 0.973 * 0.7261 + 0.158477

cos(a-B) ≈ 0.7065

Therefore, the value of cos(a-B)  would be 0.7065.