Respuesta :

Sure, let's calculate the wavelength of a beam of light with a frequency of 100,000,000 Hz (100 MHz). Here are the steps we need to follow:

### Step-by-Step Solution:

1. Identify the necessary constants and values:
- Speed of light ([tex]\(c\)[/tex]): [tex]\(3 \times 10^8 \, \text{m/s}\)[/tex]
- Frequency ([tex]\(f\)[/tex]): [tex]\(100,000,000 \, \text{Hz}\)[/tex]

2. Recall the formula for wavelength ([tex]\(\lambda\)[/tex]):
[tex]\[ \lambda = \frac{c}{f} \][/tex]
where:
- [tex]\(\lambda\)[/tex] is the wavelength,
- [tex]\(c\)[/tex] is the speed of light,
- [tex]\(f\)[/tex] is the frequency.

3. Plug the values into the formula:
- Speed of light, [tex]\(c = 3 \times 10^8 \, \text{m/s}\)[/tex]
- Frequency, [tex]\(f = 100,000,000 \, \text{Hz}\)[/tex] (which is [tex]\(1 \times 10^8 \, \text{Hz}\)[/tex])

[tex]\[ \lambda = \frac{3 \times 10^8 \, \text{m/s}}{1 \times 10^8 \, \text{Hz}} \][/tex]

4. Perform the division:
[tex]\[ \lambda = \frac{3 \times 10^8}{1 \times 10^8} \][/tex]

5. Simplify the expression:
[tex]\[ \lambda = 3 \, \text{meters} \][/tex]

### Conclusion:
The wavelength of a beam of light with a frequency of 100,000,000 Hz is [tex]\(3\)[/tex] meters.