Respuesta :
[tex]G=\sqrt{AH} \\
G^2=(\sqrt{AH})^2 \\
G^2=AH \\
H=\frac{G^2}{A} \\ \\ A=\frac{a+b}{2} \hbox{ and } G=\sqrt{ab} \\ \Downarrow \\
H=\frac{G^2}{A}=\frac{(\sqrt{ab})^2}{\frac{a+b}{2}}=\frac{ab}{\frac{a+b}{2}}=ab \times \frac{2}{a+b}=\frac{2ab}{a+b} \\ \\
\boxed{H=\frac{2ab}{a+b}}[/tex]
Answer:
[tex]H = \frac{2ab}{a+b}[/tex]
Step-by-step explanation:
As per the given statement:
The arithmetic mean (A) of two numbers (a and b) is given by the formula:
[tex]A = \frac{a+b}{2}[/tex] .....[1]
and
their geometric mean (G) is given by :
[tex]G = \sqrt{ab}[/tex] .....[2]
Their harmonic mean (H) is given by the formula:
[tex]G = \sqrt{AH}[/tex]
Squaring both sides we get;
[tex]G^2 = AH[/tex]
Substitute the given values we have;
[tex](\sqrt{ab})^2 =\frac{a+b}{2} \cdot H[/tex]
⇒[tex]ab = \frac{a+b}{2} \cdot H[/tex]
Multiply by 2 both sides we have;
[tex]2ab = a+b \cdot H[/tex]
Divide both sides by a+b we have;
[tex]\frac{2ab}{a+b} =H[/tex]
or
[tex]H = \frac{2ab}{a+b}[/tex]
Therefore, the formula correctly gives H in terms of a and b is, [tex]H = \frac{2ab}{a+b}[/tex]