Respuesta :

Let x be the number in the problem. When it states that x is "no more than -10", it means than it is less than or equal to -10. So, we have

[tex] \frac{2}{3} [/tex]x≤-10

In order to cancel out the [tex] \frac{2}{3} [/tex] on the left and isolate x, we multiply both sides by [tex] \frac{3}{2} [/tex] (since [tex] \frac{3}{2}[/tex]·[tex] \frac{2}{3} [/tex]=1). Thus, we have

x≤-10·[tex] \frac{3}{2} [/tex]=-15

Therefore, x≤-15