Respuesta :
Hello,
[tex]P(x,y)=x^2+y^2-ax=0\\\\ \dfrac{\partial{P}}{\partial{x}}=2x-a\\\\ \dfrac{\partial{P}}{\partial{y}}=2y\\\\ Q(x,y)=x^2+y^2-by=0\\\\ \dfrac{\partial{Q}}{\partial{x}}=2x\\\\ \dfrac{\partial{Q}}{\partial{y}}=2y-b\\\\ \dfrac{\partial{P}}{\partial{x}}*\dfrac{\partial{Q}}{\partial{x}}+\dfrac{\partial{P}}{\partial{y}}*\dfrac{\partial{Q}}{\partial{y}}=(2x-a)*2x+2y(2y-b)\\ =4x^2+4y^2-2ax-2by\\ =2(2x^2+2y^2-ax-by)\\ =2*P(x,y)+Q(x,y))\\ =2*(0+0)=0\\\\ Answer YES [/tex]
[tex]P(x,y)=x^2+y^2-ax=0\\\\ \dfrac{\partial{P}}{\partial{x}}=2x-a\\\\ \dfrac{\partial{P}}{\partial{y}}=2y\\\\ Q(x,y)=x^2+y^2-by=0\\\\ \dfrac{\partial{Q}}{\partial{x}}=2x\\\\ \dfrac{\partial{Q}}{\partial{y}}=2y-b\\\\ \dfrac{\partial{P}}{\partial{x}}*\dfrac{\partial{Q}}{\partial{x}}+\dfrac{\partial{P}}{\partial{y}}*\dfrac{\partial{Q}}{\partial{y}}=(2x-a)*2x+2y(2y-b)\\ =4x^2+4y^2-2ax-2by\\ =2(2x^2+2y^2-ax-by)\\ =2*P(x,y)+Q(x,y))\\ =2*(0+0)=0\\\\ Answer YES [/tex]
Yes, the given curves are orthogonal. A further explanation is below.
Given equation is:
- [tex]x^2+y^2=ax[/tex]
By differentiating both sides, we get
→ [tex]2x+2yy'=a[/tex]
→ [tex]y'=\frac{a-2x}{2y} = m_1[/tex]
again,
- [tex]x^2+y^2=by[/tex]
By differentiating both sides, we get
→ [tex]2x+2yy' =by'[/tex]
→ [tex]y' = \frac{-2x}{2y-b}[/tex]
For both curves are orthogonal, we get
→ [tex]m_1 \ m_2 = -1[/tex]
By substituting the values, we get
→ [tex]\frac{(a-2x)}{2y} \ \frac{(-2x)}{2y-b} = -1[/tex]
→ [tex]-2ax +4x^2=-4y^2+2yb[/tex]
→ [tex]4(x^2+y^2)=2ax+2yb[/tex]
Since,
- [tex]ax=x^2+y^2[/tex]
- [tex]by=x^2+y^2[/tex]
then,
→ [tex]4(x^2+y^2) =2(x^2+y^2)+2(x^2+y^2)[/tex]
→ [tex]4x^2+4y^2=4x^2+4y^2[/tex] (true)
Thus the above response is appropriate.
Learn more about orthogonal here:
https://brainly.com/question/20308962
