Respuesta :

Answer:

[tex]x = \frac{8}{3}[/tex] is the solution to  [tex]\log_2 9x - \log_2 3 = 3[/tex]

Step-by-step explanation:

Using the logarithmic rules:

[tex]\log \frac{m}{n} = \log m -\log n[/tex]

if [tex]\log_b x = a[/tex] then;

[tex]x = b^a[/tex]

Given the equation:

[tex]\log_2 9x - \log_2 3 = 3[/tex]

Solve for x:

Apply the logarithmic rules:

[tex]\log_2 \frac{9x}{3} = 3[/tex]

⇒[tex]\log_2  3x = 3[/tex]

Apply the logarithmic rules;

[tex]3x = 2^3[/tex]

⇒[tex]3x = 8[/tex]

Divide both sides by 3 we have;

[tex]x = \frac{8}{3}[/tex]

Therefore, the solution for the given equations is, [tex]x = \frac{8}{3}[/tex]

Answer: B or option two on edg

X = 8/3

Step-by-step explanation: