Respuesta :

The equation [tex]x^2+kx=5x+3[/tex] must have only one solution for the line [tex]y[/tex] to be a tangent line to the quadratic function [tex]f(x)[/tex].

[tex]x^2+kx=5x+3\\ x^2+kx-5x-3=0\\ x^2+(k-5)x-3=0\\ \Delta=(k-5)^2-4\cdot1\cdot(-3)=(k-5)^2+12\\\\ (k-5)^2+12=0\\ (k-5)^2=-12\\ k\in \emptyset [/tex]

So there isn't such value of k.