Respuesta :

2. ∠JKM≅∠LKM
5. MK≅MK
6. Transitive Property of Congruence
7. Corresponding parts of congruent triangles are congruent.
8. Definition of Equidistant

Answer:-  2. ∠JKM≅∠LKM

5. MK≅MK

6. AAS congruence postulate.

7. Corresponding parts of congruent triangles are congruent.

8. Definition of equidistant.

Therefore the complete proof will be

Proof :- 1. KM is the line bisector of ∠JKL.  [Given]

2. ∠JKM≅∠LKM             [Definition of bisector]

3. ∠KXM and ∠KYM are right angles [Given]

4. ∠KXM ≅ ∠KYM [All right angles are congruent]

5. MK≅MK  [reflexive property of congruence]

6. ΔKXM ≅ ΔKYM  [AAS congruence postulate]

7. MX≅MY [Corresponding parts of congruent triangles are congruent]

8. Point  M is equidistant from the sides of ∠JKL [Definition of equidistant]

Hence proved.