how would the expression x^3-3sqrt(3) be rewritten using difference of cubes?

Answer:
Correct option is:
C. [tex](x-\sqrt{3})(x^2+3+x\sqrt{3} )[/tex]
Step-by-step explanation:
x^3-3sqrt(3)
= [tex]x^3-3\sqrt{3} \\\\=x^3-\sqrt{3}^3[/tex]
= [tex](x-\sqrt{3})(x^2+3+x\sqrt{3} )[/tex]
(since, [tex]a^3-b^3=(a-b)(a^2+b^2+ab)[/tex])
Hence, the correct option is:
C. [tex](x-\sqrt{3})(x^2+3+x\sqrt{3} )[/tex]