Answers:
_______________________________________________________
Question 1: The answer is: " [tex] \frac{1}{6}[/tex] " .
_______________________________________________________
Question 2: The answer is: " -12.8 ".
_______________________________________________________
Question 3: The answer is: " 12.3 " .
_______________________________________________________
Explanation:
_______________________________________________________
Question 1:
_______________________________________________________
(-4/3) − (-3/2) = [tex] \frac{-4}{ 3} [/tex] + [tex] \frac{3}{2}[/tex] ;
→ The least common multiple (LCM) of the numbers "2" and "3" (which are the numbers in the denominators) is: "6" ; so we can convert each fraction value to the equivalent fraction with a denominator of "6" ;
→ [tex] \frac{-4}{3} [/tex] = [tex] \frac{?}{6} [/tex] ;
→ What value is the "?" ? ; → Look at the denominators.
→ (3 * ? = 6); → (6÷3 = 2).
→So; [tex] \frac{-4}{3} [/tex] = [tex] \frac{-4*2}{3*2} [/tex] ;
= [tex] \frac{-8}{ 6} [/tex] ;
_______________________________________________________
→ Now; → [tex] \frac{3}{2} [/tex] = [tex] \frac{?}{6} [/tex] ;
→ What value is the "?" ? ; → Look at the denominators.
→ (2 * ? = 6); → (6÷2 = 3).
→So; [tex] \frac{3}{2} [/tex] = [tex] \frac{3*3}{ 2*3} [/tex] ;
= [tex] \frac{9}{6} [/tex] ;
_______________________________________________________
Now, we can rewrite the problem:
________________________________
→ [tex] \frac{-8}{ 6} [/tex] + [tex] \frac{9}{ 6} [/tex] ;
= [tex] \frac{-8+9}{6}[/tex] ;
= [tex]\frac{1}{6} [/tex] .
_______________________________________________________
Question 2:
_______________________________________________________
" -3.9 − 8.9 " = - (3.9 + 8.9) = - 12.8 .
_______________________________________________________
Question 3:
_______________________________________________________
" 2.9 − (-9.4) " = 2.9 + 9.4 = 12.3 .
Note: Subtracting a negative number is "adding a positive number".
_______________________________________________________