Which function is a horizontal compression of its parent function f(x)=x^7 by a factor of 4?
q(x)=(1/4x)^7
r(x)=(4x)^7
s(x)=4x^7
t(x)=1/4x^7

thank you!

Respuesta :

Note that what we want is to compress any point (a, b) in the parent function, to (a, b/4).

(a, b) is a point of the graph of the function [tex]f(x)=x^7[/tex], thus we can rewrite the point as:
                                     [tex](a, a^7)[/tex].

This point is compressed to 

                                   [tex]\displaystyle{ (a, \frac{a^7}{4} )[/tex].

This means that the function we are looking for is [tex]\displaystyle{ t(x)= \frac{x^7}{4} [/tex].

Answer: t(x)=1/4x^7

The answer is r(x) = (4x)^7