Respuesta :

see the attached figure to better understand the problem

we know that the distance between two points is equal to

[tex]d=\sqrt{(y2-y1)^{2}+(x2-x1)^{2}}[/tex]

Let

[tex]A(-3,3)\ B(3,4))\ C(3,-3)[/tex]  

Step 1

Find the distance AB

[tex]A(-3,3)\ B(3,4)[/tex]  

substitute in the formula

[tex]d=\sqrt{(4-3)^{2}+(3+3)^{2}}[/tex]

[tex]d=\sqrt{(1)^{2}+(6)^{2}}[/tex]

[tex]dAB=\sqrt{37}\ units[/tex]

Step 2

Find the distance BC

[tex]B(3,4))\ C(3,-3)[/tex]  

substitute in the formula

[tex]d=\sqrt{(-3-4)^{2}+(3-3)^{2}}[/tex]

[tex]d=\sqrt{(-7)^{2}+(0)^{2}}[/tex]

[tex]dBC=7\ units[/tex]

Step 3

Find the distance AC

[tex]A(-3,3)\ C(3,-3)[/tex]  

substitute in the formula

[tex]d=\sqrt{(-3-3)^{2}+(3+3)^{2}}[/tex]

[tex]d=\sqrt{(-6)^{2}+(6)^{2}}[/tex]

[tex]dAC=\sqrt{72}\ units[/tex]

Step 4

Find the perimeter of the triangle

we know that

the perimeter of the triangle is the sum of the length sides of the triangle

[tex]P=AB+BC+AC[/tex]

substitute the values

[tex]P=\sqrt{37}\ units+7\ units+\sqrt{72}\ units=21.6\ units[/tex]

therefore

the answer is

the perimeter of the triangle is [tex]21.6\ units[/tex]



Ver imagen calculista