Find the GCF of the first two terms and the GCF of the last two terms of the polynomial. 5h3 + 20h2 + 4h + 16
A. 5h2, 4
B. 5h2, 16
C. 5h3, 4
D. h2, h

Respuesta :

Find the GCF of the first two terms and the GCF of the last two terms of the polynomial.

5h3 + 20h2 + 4h + 16
Answer is A. 5h2,4

Answer: A. [tex]5h^2,4[/tex]

Step-by-step explanation:

The given polynomial : [tex]5h^3 + 20h^2 + 4h + 16 [/tex]

Here, the first two terms = [tex]5h^3 \text{ and }20h^2[/tex]

[tex]5h^3=5\times h\times h\times h\\\\20h^2=4\times5\times h\times h[/tex]

Then, the greatest common factor of first two terms (GCF)=[tex]5\timesh\times h=5h^2[/tex]

The last two terms :  [tex] 4h\text{ and }16 [/tex]

[tex]4h=4\times h\\\\16=4\times4[/tex]

Then, the greatest common factor of last two terms (GCF)= [tex]4[/tex]