Respuesta :
Find the GCF of the first two terms and the GCF of the last two terms of the polynomial.
5h3 + 20h2 + 4h + 16
Answer is A. 5h2,4
5h3 + 20h2 + 4h + 16
Answer is A. 5h2,4
Answer: A. [tex]5h^2,4[/tex]
Step-by-step explanation:
The given polynomial : [tex]5h^3 + 20h^2 + 4h + 16 [/tex]
Here, the first two terms = [tex]5h^3 \text{ and }20h^2[/tex]
[tex]5h^3=5\times h\times h\times h\\\\20h^2=4\times5\times h\times h[/tex]
Then, the greatest common factor of first two terms (GCF)=[tex]5\timesh\times h=5h^2[/tex]
The last two terms : [tex] 4h\text{ and }16 [/tex]
[tex]4h=4\times h\\\\16=4\times4[/tex]
Then, the greatest common factor of last two terms (GCF)= [tex]4[/tex]