Respuesta :

Answer-

The vertex will be at [tex](-\dfrac{1}{3},\dfrac{2}{3})[/tex]

Solution-

The parabolic equation given is,

[tex]y=3x^2+2x+1[/tex]

Here,

a = 3, b = 2, c = 1

The equation of the axis of symmetry is,

[tex]x=-\dfrac{b}{2a}[/tex]

Putting the values,

[tex]\Rightarrow x=-\dfrac{2}{2\times 3}\\\\\Rightarrow x=-\dfrac{1}{3}[/tex]

As we know, the axis of symmetry and the parabola meet only at one point and that is the vertex.

So, the vertex will be at [tex](-\frac{b}{2a},f(-\frac{b}{2a}))[/tex]

Hence,

[tex]f(-\frac{b}{2a})=f(-\frac{1}{3})=3(-\frac{1}{3})^2+2(-\frac{1}{3})+1\\\\=3(\frac{1}{9})-2(\frac{1}{3})+1\\\\=\dfrac{2}{3}[/tex]

Ver imagen InesWalston

Answer:

Its B on edge

Step-by-step explanation: