I assume for this problem you are looking for the derivative?
If so. I hope this helps!
Apply the sum difference rule > d/dx(x^4) + d/dx(7^3) + d/dx(13x^2) - d/dx(3x) - d/dx(18)
For d/dx(x^4), d/dx(7^3), d/dx(13x^2), d/dx(3x), and d/dx(18). We want to take the constant out and the apply the power rule of [tex] \frac{d}{dx} (x^a) = a * x^{a - 1}[/tex]
d/dx(x^4) > [tex]4x^{4 - 1} \ \textgreater \ 4x^3[/tex]
d/dx(7^3) > [tex]7 \frac{d}{dx} (x^3) \ \textgreater \ 7 * 3x^{3 - 1} \ \textgreater \ 21x^2[/tex]
d/dx(13x^2) > [tex]13 \frac{d}{dx} (x^2) \ \textgreater \ 13 * 2x^{2 - 1} \ \textgreater \ 26x[/tex]
d/dx(3x) > [tex]3 \frac{d}{dx} (x) \ \textgreater \ 3 * 1 \ \textgreater \ 3[/tex]
d/dx(18) > [tex]Deriv OFconstant \ \textgreater \ \frac{d}{dx}(a) = 0 \ \textgreater \ 0 [/tex]
Now we can combine these all.
[tex]4x^3 + 21x^2 + 26x - 3 - 0 \ \textgreater \ Simplify \ \textgreater \ 4x^3 + 21x^2 + 26x - 3[/tex]
Therefore our final answer is
[tex]4x^3 + 21x^2 + 26x - 3[/tex]