Earth has a radius of 6371 kilometers. A pilot is flying at a steady altitude of 5.6 kilometers above the earth's surface. What is the pilot's distance to the horizon?

Respuesta :

The pilot's distance to the horizon is 267.2 km

Answer:

The pilot's distance to the horizon is 267.183 kilometers.

Step-by-step explanation:

It is given that earth has a radius of 6371 kilometers. A pilot is flying at a steady altitude of 5.6 kilometers above the earth's surface.

Using Pythagoras theorem in triangle OAB, we get

[tex]OA^2=OB^2+AB^2[/tex]

[tex](6371+5.6)^2=(6371)^2+AB^2[/tex]

[tex]40661027.56-40589641=AB^2[/tex]

[tex]71386.56=AB^2[/tex]

Taking square root on both the sides,

[tex]\sqrt{71386.56}=AB[/tex]

[tex]267.182634166=AB[/tex]

[tex]267.183\approx AB[/tex]

Therefore the pilot's distance to the horizon is 267.183 kilometers.

Ver imagen DelcieRiveria