Find an equation of the tangent to the curve at the point corresponding to the given value of the parameter. x = t3 + 1, y = t10 + t; t = −1

Respuesta :

The equation of the tangent line is:
[tex]y - y_t = \frac{y'(t)}{x'(t)}(x - x_t)[/tex]

differentiate x and y
[tex]y - y_t = \frac{10t^9 +1}{3t^2} (x - x_t)[/tex]

Sub in t = -1
[tex]y -0 = \frac{-9}{3}(x - 0) \\ \\ y = -3x[/tex]

An equation of the tangent to the curve at the point corresponding to the given value of the parameter. x = t3 + 1, y = t10 + t; t = −1 is:

y = -3x

The equation of the tangent line can be estimated by applying the formula y – y₁ = m (x – x₁).

where;

  • m = slope and;
  • (x₁ , y₁) = coordinate points of the line.

From the information given:

x = t³ + 1    ;    y = t¹⁰ + t     ;    t = -1

The first thing to do is to differentiate the given parameters;

[tex]\mathbf {\dfrac{dx}{dt}= \dfrac{d}{dt}(t^3+1)}[/tex]

[tex]\mathbf {\dfrac{dx}{dt}= 3t^2+0}[/tex]

[tex]\mathbf {\dfrac{dx}{dt}= 3t^2}[/tex]

Also;

[tex]\mathbf {\dfrac{dy}{dt}= \dfrac{d}{dt}(t^{10}+t)}[/tex]

[tex]\mathbf {\dfrac{dy}{dt}= \dfrac{d}{dt}(10t^{9}+1)}[/tex]

Now, when t = -1

  • x will be = (-1)³ + 1
  • x = -1 + 1
  • x = 0

  • y = (-1)¹⁰ + (-1)
  • y = 1 - 1
  • y = 0

[tex]\mathbf{\dfrac{dx}{dt} = 3(-1)^2}[/tex]

[tex]\mathbf{\implies 3(1)} \\ \\ \mathbf{=3}[/tex]

[tex]\mathbf {\dfrac{dy}{dt}= 10(-1)^{9}+1)}[/tex]

[tex]\mathbf{\implies -10+1} \\ \\ \mathbf{=-9}[/tex]

The slope (m) can be computed as:

[tex]\mathbf{m = \dfrac{dy}{dx} }[/tex]

[tex]\mathbf{m = \dfrac{\dfrac{dy}{dt} }{\dfrac{dx}{dt} } }[/tex]

[tex]\mathbf{m = \dfrac{-9 }{3} }[/tex]

m = -3

The equation on a tangent line can be expressed as:

y - y₁ = m(x - x₁)

y - 0 = -3(x - 0)

y = -3x

Therefore, we can conclude that the equation of the tangent to the curve at the point corresponding to the given value of the parameter is -3x.

Learn more about rhe equation of the tangent here:

https://brainly.com/question/6617153?referrer=searchResults