contestada

In right ∆ABC the altitude CH to the hypotenuse AB intersects angle bisector AL in point D. Find BC if AD = 8 cm and DH = 4 cm.

Respuesta :

check the picture below.

notice that the triangle ADH, since the segment AL is an angle bisector, meaning  it cuts the angle A in two equal halves, then the triangle ADH is only using half of A.
Ver imagen jdoe0001

      Measure of side BC in the figure attached is 24 units.

 Given in the question,

  • m∠CAL = m∠BAL [AL is an angle bisector of ∠CAB]
  • m∠C = 90°
  • AD = 8 cm
  • DH = 4 cm

By applying sine rule in right ΔADH,

[tex]\text{sin}\theta=\frac{\text{Opposite side}}{\text{Hypotenuse}}[/tex]

[tex]\text{sin}(\angle DAH)=\frac{\text{DH}}{\text{AD}}[/tex]

                   [tex]=\frac{4}{8}[/tex]

[tex]\angle DAH=\text{sin}^{-1}}(\frac{1}{2} )[/tex]

            [tex]=30^\circ[/tex]

Therefore, [tex]\angle CAB=2(\angle DAH)[/tex]

                              [tex]=2(30^\circ)[/tex]

                              [tex]=60^\circ[/tex]

By applying tangent rule in right ΔAHD,

[tex]\text{tan}(\angle DAH)=\frac{\text{DH}}{\text{AH}}[/tex]

[tex]\text{tan}(30^\circ)=\frac{4}{AH}[/tex]

[tex]\frac{1}{\sqrt{3}}=\frac{4}{AH}[/tex]

[tex]AH=4\sqrt{3}[/tex]

By applying cosine rule in ΔAHC,

[tex]\text{cos}(\angle CAH)=\frac{\text{Opposite side}}{\text{Adjacent side}}[/tex]

[tex]\text{cos}(60^\circ)=\frac{\text{AH}}{\text{AC}}[/tex]

[tex]\frac{1}{2} =\frac{4\sqrt{3} }{AC}[/tex]

[tex]\text{AC}=8\sqrt{3}[/tex]

By applying tangent rule in right ΔACB,

[tex]\text{tan}(\angle CAB)=\frac{\text{Opposite side}}{\text{Adjacent side}}[/tex]

[tex]\text{tan}(60)^\circ=\frac{BC}{AC}[/tex]

[tex]\sqrt{3}=\frac{BC}{8\sqrt{3}}[/tex]

[tex]BC=(8\sqrt{3})(\sqrt{3})[/tex]

[tex]BC=24[/tex] units

    Therefore, measure of side BC is 24 units.

Learn more,

https://brainly.com/question/7155064

Ver imagen eudora