Respuesta :
Simplifing the expression and moving to the RHS we have
âš2x = x +1
Let's check for extraneous solution by squaring both sides.
I assume the x and 2 are together. So we have 2x = (x+1)^2
This gives 2x = x^2 + 2x +1. So x^2 + 2x +1 -2x = 0. Then we have x^2 =-1.
When x =1; 1 is not equal to -1 so x =1 is an extraneous solution.
Answer:
There is only one solution: x = 5. The solution x = 1 is an extraneous solution.
Step-by-step explanation:
The given expression is
[tex]\sqrt{2x-1} -x+2=0[/tex]
We rewrite the expression so that we equate everything to zero to obtain,
[tex]\sqrt{2x-1} =x-2[/tex]
We now square both sides to obtain,
[tex](\sqrt{2x-1})^2 =(x-2)^2[/tex]
This simplifies to give us,
[tex]2x-1=(x-2)^2[/tex]
We now expand the parenthesis to get,
[tex]2x-1=x^2-4x+4[/tex]
We now group the terms so that we can obtain the quadratic equation;
[tex]0=x^2-4x-2x+4+1[/tex]
[tex]0=x^2-6x+5[/tex]
[tex]x^2-6x+5=0[/tex]
We split the middle term to obtain,
[tex]x^2-x-5x+5=0[/tex]
We factor to obtain,
[tex]x(x-1)-5(x-1)=0[/tex]
[tex](x-1)(x-5)=0[/tex]
[tex]\Rightarrow (x-1)=0\:or\:(x-5)=0[/tex]
[tex]\Rightarrow x=1\:or\:x=5[/tex]
Let us check to see whether the two values satisfy the given equation.
When [tex]x=1[/tex], we get,
[tex]\sqrt{2(1)-1} -1+2=0[/tex]
[tex]\Rightarrow \sqrt{1} +1=0[/tex]
[tex]\Rightarrow 1 +1=0[/tex]
[tex]\Rightarrow 2=0[/tex]
This statement is false. Hence [tex]x=1[/tex] is an extraneous solution.
When [tex]x=5[/tex], we get,
[tex]\sqrt{2(5)-1} -5+2=0[/tex]
[tex]\Rightarrow \sqrt{9} -3=0[/tex]
[tex]\Rightarrow 3-3=0[/tex]
[tex]\Rightarrow 0=0[/tex]
This statement is very trues.
Therefore [tex]x=5[/tex] is the only solution.
There is only one solution: x = 5. The solution x = 1 is an extraneous solution.