Respuesta :
[tex]\bf \left. \qquad \right.\textit{internal division of a line segment}
\\\\\\
A(0,22)\qquad B(11,0)\qquad
\qquad 5:6\quad \textit{from A to B}
\\\\\\
\cfrac{AM}{MB} = \cfrac{5}{6}\implies \cfrac{A}{B} = \cfrac{5}{6}\implies 6A=5B\implies 6(0,22)=5(11,0)\\\\
-------------------------------\\\\[/tex]
[tex]\bf { M=\left(\cfrac{\textit{sum of "x" values}}{\textit{sum of ratios}}\quad ,\quad \cfrac{\textit{sum of "y" values}}{\textit{sum of ratios}}\right)}\\\\ -------------------------------\\\\ M=\left(\cfrac{(6\cdot 0)+(5\cdot 11)}{5+6}\quad ,\quad \cfrac{(6\cdot 22)+(5\cdot 0)}{5+6}\right) \\\\\\ M=\left( \cfrac{55}{11}~~,~~\cfrac{132}{11} \right)[/tex]
and surely you know what that is.
[tex]\bf { M=\left(\cfrac{\textit{sum of "x" values}}{\textit{sum of ratios}}\quad ,\quad \cfrac{\textit{sum of "y" values}}{\textit{sum of ratios}}\right)}\\\\ -------------------------------\\\\ M=\left(\cfrac{(6\cdot 0)+(5\cdot 11)}{5+6}\quad ,\quad \cfrac{(6\cdot 22)+(5\cdot 0)}{5+6}\right) \\\\\\ M=\left( \cfrac{55}{11}~~,~~\cfrac{132}{11} \right)[/tex]
and surely you know what that is.
Answer:
Answer is (5,12) if anyone wanted to know
Step-by-step explanation: