He integral i = z z ∂w f · ds when f(x, y, z) = y i − 4yz j + 3z 2 k and ∂w is the boundary of the solid w enclosed by the upper half of the sphere x 2 + y 2 + z 2 = 1

Respuesta :

Use the divergence theorem:

[tex]\displaystyle\iint_{\partial W}\mathbf f\cdot\mathrm d\mathbf S=\iiint_W\nabla\cdot\mathbf f\,\mathrm dV[/tex]

We have divergence

[tex]\nabla\cdot\mathbf f=\dfrac{\partial(y)}{\partial x}+\dfrac{\partial(-4yz)}{\partial y}+\dfrac{\partial(3z^2)}{\partial z}=-4z+6z=2z[/tex]

The volume integral is best computed by first converting to spherical coordinates:

[tex]x=r\cos s\sin t[/tex]
[tex]y=r\sin s\sin t[/tex]
[tex]z=r\cos t[/tex]

Now,

[tex]\displaystyle\iint_{\partial W}\mathbf f\cdot\mathrm d\mathbf S=\int_{t=0}^{t=\pi/2}\int_{s=0}^{s=2\pi}\int_{r=0}^{r=1}2r\cos t\,\mathrm dr\,\mathrm ds\,\mathrm dt=2\pi[/tex]