Respuesta :
v = Πr²h
250Π = Πr²(10)
r² = 250Π/10Π
r² = 25
r = √25
r = 5
so, d = 2r
d = (2)(5)
d = 10 cm
250Π = Πr²(10)
r² = 250Π/10Π
r² = 25
r = √25
r = 5
so, d = 2r
d = (2)(5)
d = 10 cm
The diameter of the cylinder will be "10 cm".
Given values are:
- Volume, V = 250π cm³
- Height, h = 10 cm
As we know,
The Volume of cylinder,
→ [tex]V = \pi r^2 h[/tex]
By substituting the values, we get
→ [tex]250 \pi = \pi r^2 (10)[/tex]
→ [tex]r^2=\frac{250}{10}[/tex]
→ [tex]r=\sqrt{25}[/tex]
→ [tex]= 5[/tex]
The diameter will be:
→ [tex]d = 2r[/tex]
[tex]= 2\times 5[/tex]
[tex]=10 \ cm[/tex]
Thus the above is the appropriate solution.
Learn more about volume of cylinder here:
https://brainly.com/question/16177070
