Answer:
Option b is correct
(5, 8)
Step-by-step explanation:
The general equation of circle with center (h, k) and radius r is given by:
[tex](x-h)^2+(y-k)^2 = r^2[/tex] ....[1]
As per the statement:
Given the equation:
[tex](x^2-10x+25) + (y^2 - 16y + 64) = 16[/tex]
then;
[tex](x^2-2 \cdot x \cdot 5+5^2) + (y^2 - 2 \cdot y \cdot 8 + 8^2) = 4^2[/tex]
Using identity rule:
[tex](a-b)^2 = a^2-2ab+b^2[/tex]
then;
[tex](x-5)^2+(y-8)^2 = 4^2[/tex]
Compare with equation [1];
h = 5 and k = 8
Therefore, center of circle, (5, 8)