Respuesta :
[tex]\bf \textit{volume of a cone}\\\\
V=\cfrac{\pi r^2 h}{3}\quad
\begin{cases}
r=radius\\
h=height\\
----------\\
diameter=2\\
r=\frac{diameter}{2}\\
\quad = 1\\
h=6
\end{cases}\implies V=\cfrac{\pi\cdot 1^2\cdot 6}{3}
\\\\\\
V=2\pi \\\\
-------------------------------[/tex]
[tex]\bf \cfrac{\stackrel{vanilla}{volume}}{\stackrel{chocolate}{volume}}\qquad 2:1\qquad \cfrac{2}{1}\implies \cfrac{2\cdot \frac{V}{2+1}}{1\cdot \frac{V}{2+1}}\implies \cfrac{2\cdot \frac{2\pi }{2+1}}{1\cdot \frac{2\pi }{2+1}} \\\\\\ \cfrac{2\cdot \frac{2\pi }{3}}{1\cdot \frac{2\pi }{3}}\implies \cfrac{\quad \frac{4\pi }{3}\quad }{\frac{2\pi }{3}}[/tex]
[tex]\bf \cfrac{\stackrel{vanilla}{volume}}{\stackrel{chocolate}{volume}}\qquad 2:1\qquad \cfrac{2}{1}\implies \cfrac{2\cdot \frac{V}{2+1}}{1\cdot \frac{V}{2+1}}\implies \cfrac{2\cdot \frac{2\pi }{2+1}}{1\cdot \frac{2\pi }{2+1}} \\\\\\ \cfrac{2\cdot \frac{2\pi }{3}}{1\cdot \frac{2\pi }{3}}\implies \cfrac{\quad \frac{4\pi }{3}\quad }{\frac{2\pi }{3}}[/tex]
Answer: Volume of vanilla ice cream in the cone= [tex]\dfrac{4\pi}{3}\ in^3[/tex]
Step-by-step explanation:
Given : The diameter of cone = : d= 2 inches
Then radius of cone = Half of diameter = 1 inch
Height of cone = 6 inches.
Volume of cone = [tex]\dfrac{1}{3}\pi r^2 h[/tex] , where r= radius , h= height of cone.
Then, Volume of cone = [tex]\dfrac{1}{3}\pi (1)^2 (6)=\dfrac{1}{3}\pi (6)= 2 \pi\ in^3[/tex]
Since ice cream cone is filled with a vanilla and chocolate ice cream at a ratio of 2:
1.
Let x be the volume of chocolate ice cream , then the volume of vanilla ice-cream will be 2x.
Also, Volume of cone=Volume of vanilla ice cream + Volume of chocolate ice cream
i.e. [tex]2\pi = 2x+x\\\\ \Rightarrow\ 3x= 2\pi \\\\\Rightarrow\ x=\dfrac{2\pi}{3}\ in^3[/tex]
Then , the volume of vanilla ice cream in the cone= [tex]2x=\dfrac{4\pi}{3}\ in^3[/tex]