For each bond, show the direction of polarity by selecting the correct partial charges. si-p si-s s-p the most polar bond is

Respuesta :

To determine the direction of polarity of each bond, we must know the electronegativities of each atom involved in the bonds.

Si = 1.90
P = 2.19
S = 2.58

As we move right across a row in the periodic table, the atoms become more electronegative. The direction of polarity in a bond will have the partial positive charge on the less electronegative atom and the partial negative charge on the more electronegative atom. Therefore, the direction of polarity of each bond is as follows:

(δ⁺)Si - P(δ⁻)
(δ⁺)Si - S(δ⁻)
(δ⁻)S - P(δ⁺)

Since silicon is the least electronegative, it will have the partial positive charge in each bond. And since sulfur is the most electronegative, it will have a partial negative charge when bonded to either silicon or phosphorus.

The biggest elctronegative difference is between silicon and sulfur. So  Si-S will be most polar bond.

The polarity between the two atoms is determined by their relative difference in electronegativity.

The Electronegativity of ,

Silicon= 1.9

Phosphorus= 2.19

Sulfur= 2.58

The direction of polarity,

[tex]\rm \bold{ \delta^+Si\rightarrow \delta^-P}\\\rm \bold{ \delta^+Si\rightarrow \delta^-S}\\\rm \bold{ \delta^+P\rightarrow \delta^-S}[/tex]

Since, the biggest elctronegative difference is between silicon and sulfur (Si-S).

Hence we can say that Si-S will be most polar bond.

To know more about  electronegativity, refer to the link:

https://brainly.com/question/23197475?referrer=searchResults