[tex]\bf \textit{difference and sum of cubes}
\\\\
a^3+b^3 = (a+b)(a^2-ab+b^2)\qquad
(a+b)(a^2-ab+b^2)= a^3+b^3
\\\\
a^3-b^3 = (a-b)(a^2+ab+b^2)\qquad
(a-b)(a^2+ab+b^2)= a^3-b^3\\\\
-------------------------------\\\\
64g^3+8\implies 4^3g^3+8\implies (4g)^3+2^3
\\\\\\
(4g+2)[(4g)^2-(4g)(2)+2^2]\implies (4g+2)[(4^2g^2)-8g+4]
\\\\\\
(4g+2)(16g^2-8g+4)[/tex]